Starting Networking

Assumed knowledge:

e The basics of java
e What a package is
e What a main method is

Covered in this lesson:

e Creating simple networked server-client applications

e Using Bluel

e (Creating .bat files to run .jar files using command prompt
e Threading (briefly)

In this guide | will cover the basics of networking, and walk through the creation of some programs.

First off, | should introduce the java package we're going to use for this: The java.net.* package. You

can go right ahead and look at its documentation but it might make slightly more sense to see some
of the methods in action, as that will probably be clearer. We're also going to be using the java.io.*
package. When | use classes from java.io | won't fully explain how they work, as this is about
networking. If you want to understand these uses, there will be material on the internet, and |
might make a lesson in the future covering it.

Now, although this is a course for programming in Greenfoot, | feel it will be much clearer if first we
make a program or two in BlueJ (If you don't have this, download it here). BlueJ (actually made by

the same people as Greenfoot, so you may recognise the code editor interface) is a simple IDE for
creating programs rather than games (you can create games in it, but it's much, much more complex

than doing it in Greenfoot).

% 3 . S
The first program we're going to be making G kel ohochent l=lel x]

Project Edit Tools View Help

will be called "Echo". What it will do (as you

might have guessed) is take a message from {New Ciass..) j

the user, send it to the server, and display the ———>
message the server sends back (which will be, —4>
in this case, the same message with "Echo: " Compile -
added before it). @ Class
") Abstract Class
Now for this we're going to have to create 2) Interface

") Applet
~) Unit Test

separate programs (named "EchoClient" and
"EchoServer" - | recommend naming

~) Enum

networked programs like this to avoid

confusion). The first program I'm going to o) oo
walk through the creation of is "EchoClient".

http://docs.oracle.com/javase/1.5.0/docs/api/java/net/package-summary.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/package-summary.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/package-summary.html
http://www.bluej.org/download/download.html

Firstly what we're going to do is create a class. To do this, click the "New Class..." button, enter the
name for it (We're going to call it "Main"), and hit OK.

Once you've done this, click on the box that has the title "Main" on it to access the code editor, and
the fun part can begin.

Now the first part we should do is getting the user's input. Here's my approach to it:

Class Edit Tools Options

[Cnmpile] [Undnl [Cnpy] [F'aste] [Find...] [Clnse] Source Code

import java.io.BufferedBeader;
import java.io.InputStreamBeader;
public class Main
{
public static void main(Stringl[] args) throws Exception

1

B T

System.out .println{"Helcome to EcholClient!™);
System.out .println({"Enter your input bkelow:");

woom

BufferedBeader in = new BufferedBeader (new InputStreamBeader (System.in));

=
=]

String userlInput;

=
=

while { (userInput = in_readLine()) != null)

{

e el
T ¥

}

in.close();

[
men

System.out . .println({"Program terminated."™);

What's going on here is effectively:

Print a welcome message

Create a (Buffered)reader that reads from the System input stream

Create the userlnput variable

Read a line from the user and store it as userlnput

Check the user doesn't want to exit the program (indicated by typing "Stop")

If the user does want to continue, do stuff with the input and then go back to step 4

No ks whR

If the user wants to quit, print a termination message and stop the program

Now we need to send the user input to the server, wait for a response and display the response
received.

Thinking about how we will do this, the process could be concisely represented as such:

Attempt to establish a connection with the server
If successful, continue, if not, print an error message and exit
Send our input to the server

el

Wait for a response from the server

5.

Print the response

So the first part required is to establish a connection with the server. The following code does

exactly that:

change line 13 to the host name of your
machine. If you don't know your host name,
you'll want to view your computer's details Help and Support

Disconnect netwaork drive...

Default Programs

Show on Desktop

Rename

i@ |
Class Edit Teols Options
’Cnmpile] lUndn] ’Cut] ’Cnp}rl ’F'aste] [Find...] ’CInse] [Snurce Code -]
1| import java.io-BufferedBeader;
z| import java.io.InputStreamBeader;
3| import java.io.ICException;
4| import java.net.UnknownHostException;
5| import java.net.Socket;
£| public class Main
T
B public static wolid main{S5tringl[] args) throws Exception
: i
10 System.out _println("Welcome to EchoClient!™);
11 System.out _println("Enter your input below:");
1z BufferedReader in = new BufferedReader (new InputStreamPFeader (System.imn));
13 String hostWame = "Bertie—-PC";
14 int port = 320000;
15 Socket server = null;
16 boolesn connected = falae;
17 try {
18 server = new Socket (hostWame, port);
15 connected = true; L
20 } catch{UnknownHostException e) {
z1 Syatem.err._println("ERRCE: Unknown host. Program terminated.™);
zZz } catch({ICException e) |
z3 System.err.println ("ERRCR: The server is offline. PFrogram terminated.™);
24 }
25 if {connected)
ZE {
z7 String userInput;
Z8 while ({userInput = in.readLine()) != null)
e {
an
11 I
iz server.close();
a1 in_close();
a4 System.out _println{"Program terminated.™);
5 }
1€ }
|
I E— 1
Computer Open
i)
First things first, | should give a couple of Control Panel : :ﬂanag_e
. o . can with AVG
points to note, specifically about lines 13 and
14. For your program to work you'll need to Devices and Printers Map network drive...

@y
]
]
&

Contrel Panel Home

Device Manager
Remote settings
Systermn protection

Advanced system settings

See also
Action Center
Windows Update

Performance Information and

Tools

System
Manufacturer:

Rating:

Processorn
Installed memaory (RAM]:
System type:
Pen and Touch:
Advent support

Phone number:

Support hours:
Website:

Compu
Computer name:

Full computer name:

(. =) J
’ . ;'BjJ » Control Panel » All Control Panel ltems » System - Search Control Pane! yel |

-

Advent

m Windows Experience Index

Intel(R) Core(TW) i5-2320 CPU @ 3.00GHz 3.00 GHz
6.00 GB (5.73 GB usahble)

64-bit Operating System

> ADVENT

No Pen or Touch Input is available for this Display

Hardware support: 0844 800 6020 (calls charged at 5p per minute from BT
landlines) Software Advice: 0906 5151180 (Calls are charged at £1.50 per minute
from BT landlines, maximum call duration is 20 minutes)

Technical support is available 24 hours a day, 365 days a year
Online support

roup settings
rEﬂ'(:lmange settings

Workgroup:

Windows activation

Windows is activated

Product ID: SE——

WORKGROUP

Ef{:r . =iy
genuine
t

Micros
soft

Learn mere enline...

by doing Start Menu - Computer - Properties. Then, scroll down until you see your host name.

Moving on to line 14, the port number for our application is going to be 30000 because it is free (or

at least it is on my machine, you may have to change it later on when we're making our server

application if you find that port 30000 is busy for you... Anyway, we'll get onto that in time).

Going back to our client application, you'll notice that
our connection to the server is in the form of a Socket
object. In Java, connections are established between

clients and servers in the form of Sockets and

ServerSockets, where the Socket is the client's end of
the connection and the ServerSocket is, well, the
server's end of things. Imagine (for now) that Sockets
are plugs, and ServerSockets are plug sockets (to help
visualize this, see right). My point being that you not
only need both of them, but they - in the plug analogy -

A (client) Socket

’r"vérSoeket

must be the same type. What | mean is the port number in your client program must be the same as

the one your server is 'listening' on.

Anyway, back to the code. Left to do on the client is sending our input to the server and getting the

response - here's my solution to this:

Fs

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/net/ServerSocket.html

Class Edit Tools Options

’Campilel lUndo l [Cop].f] [F’aste] [Find...l ’CInsel [Snurce Code

import java.ioc.BufferedReader;
import jave.io.InputStreamBeader;
import java.io.IfException;
import java.ioc.PrintWriter;
import java.net.UnknownHostException;
import java.net.Socket;
public class Main
{
public static woid main{Stringl[] args) throws Exception
{
System_ocut.println{"Welcome to EchoClientc!™);
System.out . .println{"Enter your input below:=");
BufferedReader in = new BufferedReader(new InputStreamBesder (System.in));
String hostMame = "Bertie-EBC";
int port = 30000;
Socket serwver = null;
boolean connected = false;
try {
server = new Socket (hostWams, port);
connected = true;
1} catch (UnknownHostException e)] |
System.err_println{"ERRCR: Unknown host. Program terminated.™);
} catch (IOException e) {

System.err _println{"ERE0R: The server is offline. Program terminated.™);

}

if {connected)

1

]

PrintWriter toServ = new PrintWriter (server.getfOutputStreami), true);

3 R B3 B3 B3 R
™

0w

BufferedReader fromServ = new BufferedBeader (new InputStreamBeader (server.getInputStream()));

[
|

G
=]

S5tring userInput, fromSerwver;

o
-

while{ (userInput = in.readLine()) != null)

1

I
L)

G
0

toServ.println{userInput) ;

6
'

fromServer = fromServ.readLine();

B
tn

if (fromServer_equals("Stcop™))
break;

System.out.println{fromServer) ;

6a G
A m

I
m

}

toServ.close();

6
0

-
=]

fromServ.close();

s
-

server _close(];

.
K1

in_close();

.
B

System.out.println{"Program terminated.™);

-
.

Our client program is now completed, however if you % Bluel: EchoClient
run it now, you'll get an error telling you that the Project Edit Tools View Help

server is offline - which of course it is, as we haven't —
even made it yet! I'm not going to go over this code, as
instead I'm going to move on to making the server —— newMan
application, and once that's made I'll talk about how Gmold main(stringl] argeTo3
they are interacting, which should make more sense. Open Editor

Compile
Before | do that, I'm just quickly going to cover running Inspect

Remave
program(s). In BluelJ, you can (similar to Greenfoot) l

actually run them within the IDE, rather than having to

go to the pain of exporting it. To do this, right click on the box which says "Main", and then invoke
our method ("void main(String[] args)"). | will cover exporting programs later, once we have created
our server program (it's slightly more complicated than you initially may think).

Starting the server program, we could come up with an idea of how it might work, like this:

Try to make a ServerSocket

If successful, wait until someone connects to the server, else quit
When someone connects, wait for messages from the client

When a message is received, manipulate it and send back the reply

vk wN e

Keep repeating steps 3&4

Put into code, this looks like the following (also I'm assuming you've made a new project called
"EchoServer" with, again, a class called "Main"):

Class Edit Tools Options

(compile] [undo | [cut| [copy] [Paste | [Fina...| [close] [Source Code

import java.io.BufferedReader;
import java.io.InputStreamBeader;
import java.io.PrintWriter;
import java.io.I0Exception:;
import java.net.ServerSocket:
import java.net.Socket:
public class Main
i
public static void main(String[] args) throws Exception
{
ServerSocket servSocket = null;
boolean successful = false:;
int portc = 4444;
try {
gervSocket = new ServerSocket (port):
successful = true;
} catch (IOException e) {
System.err.println(port + " is busy, you'll have to use a different port.");
}
if (successful)
i
Socket socket = servSocket.accept():
PrintWriter toClient = new PrintWriter (socket.getOutputStream(), trus=):
BufferedReader fromClient = new BufferedReader (new InputStreamBeader (socket.getInputStream())):
String toProcess:
while { (toProcess = fromClient.readLine (}} !'= null)
{
if (toProcess.egqualsIgnoreCase ("Stop™))
break:
String processed = "Echo: " + toProcess;
toClient.println (processed) ;
H
toClient.claose ()
fromClient.close():
zocket.clos=e () :
zervSocket.clase () ;

Class compiled - no syntax errors

Now, while it might seem a big jump for me to go from nothing to the entire program, don't worry -
I'm going to go over it!

One thing you may or may not notice from my code, is that | wasn't entirely telling the truth in my
plug socket picture earlier - for a correct analogy, the ServerSocket is the actual power supply (which
there's only one of), and the Socket in the server program is the plug socket (of which we only have
one at the moment, but there is the potential for many to all stem from the same ServerSocket). The
client Socket is, however, still the plug. A difference between plugs and Sockets is that a plug
connected to a plug socket can only have transfer of power (data) in one direction - from the socket
to the plug - however when you have two connected Sockets it can go in both directions (I talk about
this more in the following paragraph).

Walking through this code, we're creating a ServerSocket with a specified port. We then do Socket
socket = servSocket.accept () ;.Whatthisdoesisthat servSocket. accept ()
listens for a connection request to our

ServerSocket servSocket, and delays within the

call to accept() until a client attempts to 51 DS 52.15
connect, at which point it makes a server-side
Socket which is linked to the client who
connected's Socket. When | say they're

connected, | mean that one's InputStream is the ~ Key: s1.0S = left socket's output stream,
52.1S = right socket's input stream, etc

other's OutputStream (for clarity, see right). Say that s1 in the % Blue): EchoClient.
diagram is our client Socket. When we do , the message goes to the Edit Tools View Help

right-facing black arrow - the stream of data between the two New Project... —
Sockets. So, when our server Socket (s2 in this case) reads from the Open Project... Ctrl+0 L
. Open Recent 4
stream, the message from the client is received. And, obviously, vice o L
pen Men Bluel...

versa (when sending from s2 to s1). Anyway, it then stores that as a Close CtrleW

variable called "socket". Once we have our Socket linked to the Save Cirl+S

client's one, we set up a PrintWriter and BufferedReader so we can Save fs...

easily access these streams talked about above. After that, we keep Import...

Create Jar File...

looping round, reading lines from the client, modifying them to say

"Echo: <message>" as opposed to "<message>", and sending them Page Setup... Ctrl+ Shift«P
back to the client. Once the server receives the message "Stop" from Jil Al -
the client, it exits this loop and, for good habits, closes our Quit Ctrl+Q

connections.

Now that we have both our client and our server programs

finished, we're going to quickly test them. Instead of running Creste 5 single Java archive (jar) file containing
L . , . the project. Executable if main dass is spedified.

them within the IDE (which you can of course do), we're going

to export our programs. To do this, we're going to create two Main dass: \OO0R(Ca000L0E SiECUIEd) T

. . . none (cannot be executed)

.jar files - one for our client, one for our server - and then Dlndude_

create two .bat files that will run the programs in command [Include Bluej project files
prompt (so you can use System.in/System.out).

[Continue H Cancel]

To make the .jar files, open up both of the
projects and click File = Create Jar File. Once
presented with the creation screen, select "Main"
as the main class, and name the file either
EchoClient.jar or EchoServer.jar (obviously
depending on which you are exporting at the
time). Once you've done this for both programs,
you're going to need to open up Notepad.

In Notepad, type the following:

- | Untitled - Notepa

File Edit Format View Help

fecho off

title Echo Client!

java —jar EchoClient.jar
pause

And save it as a .bat file in the same directory as your .jar files:

| Save As.

20 E S

Organize - Mew folder
Marne

choClient

=] E
| EchoServer

|+ Specify name forjar =)

Lookin: | . Echo program

- BciEE

l

File name:

Recent Items

Files of type: [all Files

Date modified

29/04,/2012 13:45
29,/04/2012 13:53

EchoClient.jar

Search Echo program Fe |

= @
Type

Executable Jar File

Executable Jar File

1
A

=
E
o
&
H

File name: Run EchoClient.bat

Save as type: | All Files

« Hide Folders Encoding: [ANSI

Once you've done that for the client, replace any mentions of "Client" in the text to "Server" and

save accordingly.

Time to run the programs! Navigate to the directory where your files are located, and run the server

program's .bat file.

Hopefully, you should be presented with the following:

— Ecm_ If you get the error message we included

saying that port 30000 is busy, just change
the port to a different one (not only in the
server program but also the client one!)

and re-export.

Once your server is running happily with no problems, run your client's .bat file - it should look like
the following when running:

&3 Echo Client! -nﬂﬁ Enter a couple of test messages (press enter to
\elcome to EchoClient? send a message), and you should receive responses

|] N . s - . .
Enter your input below like so: =3 Echo Client! --&

‘Helcnme to EchoClient?
Enter your input helow:
Test message?

Echo: Test message?
Another test
: Another test

It works! Congratulations on your first networked program - however we're not done yet!

A problem with this is if you attempt to run a second instance of the client program, this happens:

If not clear from the picture, what occurs is the program

Welcome to EchoClient? loads up, and lets you send a message (it thinks that its

Enter your input below: .
test connected to another - server - socket), however it then

stalls, waiting for a response from the server that its
never going to get, because the server is dealing with the
first connection it received after running - the first time
we ran the client program.

So, we need to support multiple clients.

To make this change, all we need to do is modify the server program - the client program doesn't
care whether it's the only one connected or if there are a thousand others connected. What we are
going to do to support this functionality is every time we have an incoming connection request, we
create and dispatch a new Thread to deal with it. To quickly cover how Threads work, here's an
excerpt from the documentation:

"declare a class to be a subclass of Thread. This subclass should override the run method of
class Thread. An instance of the subclass can then be allocated and started. For example, a thread
that computes primes larger than a stated value could be written as follows:

class PrimeThread extends Thread ({
long minPrime;
PrimeThread (long minPrime) {
this.minPrime = minPrime;
}
public void run() {

// compute primes larger than minPrime

}
The following code would then create a thread and start it running:

PrimeThread p = new PrimeThread(143);

p.start () ;"

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Thread.html

So, we're going to firstly create a new class named "EchoThread", with the following code:

Class Edit Tools Options

[Compilel lUndo] [Cop].r] [F‘aste l ’Find...] [Close] [Source Code

import jawva.net.Socket;
import java.io.PrintWriter;
import java.io.BufferedBReader;
import java.io.InputStreamReader;
public cless EchoThread extends Thread
{
Socket socket;
public EchoThread (Socket socket)
{
this_gocket = socket;
5
public wvoid runi()
{ try {
PrintWriter toflient = new PrintWriter (socket.getOutputStream(), true);
BufferedReader fromClient = new BufferedReader (new InputStreamPeader(socket.getInputStreami)));
String toProcess;
while((toProcess = fromClient.readLine(})) != null)
{
String processed = process(tocProcess);
toClient . printlniprocessed);
if (processed.equals("Stop™)) break;
b

toClient._closel);

3

fromClient.closel);

socket_.close();

} catch{Exception &) {} |}

a

public static String process (String toProcess)

{
if (toProcess.equalsIgnoreCase("Stop™))

63 k3 B3 B3 B3 BRI RI R
]

o o m

return "Stop”;

B
-

return "Echo: "™ + toProcess;

6
5]

[
[

I'm not going to go over this code because you'll notice a lot of this code is copy-pasted from our
original "Main" class. Basically, what we're doing is just moving the processing to this new class.

Of course, we've now got to modify Main.class. What we're going to change is how we deal with
incoming requests. I've covered what we're going to do already, so let's jump right into the code:

Class Edit Tools Options

’Compile] [Undo l [Cupyl [F‘aste l [Find...] [Cluse]

import javea.io.BufferedBeader;

import java.io.InputStreamBeader;
import jave.io.PrintWriter;
import java.io.ICException;
import java.net.ServerSocket;
import jave.net.Socket;
puklic class Main
{
public static void main(Stringl]l args)
{
ServerSocket servSocket = null;
boolean successiul = false;
int port = 30000;
try {
servSocket = new SerwverSccket (port):
guccessful = true;
} catch({I0Exception &) {

System.err._println{port + " is busy, you'll have to use a different port.");

-
woom -

}

if{successful)

1

- &

try {
while (true)

L)

new EchoThread(servSocket.accept()).startc();

en

} cetch({Exception e) {

try {
serviSocket_ close();

™

bt

} cetch{Exception ex) {}

R O T T I T)

wnoom

This code loops round (in lines 23-24), listening for a connection, and once it gets a link to a client,
creates a connected Socket, passes it to a newly-created Thread, and starts the Thread. The Thread,
like we saw in EchoThread.class then deals with the client.

If it's not clear how line 24 is doing that, it might be more obvious in a longer form:

while (true)

Socket socket servSocket.accept ()

FchoThread eT = new EchoThread (socket) ;

eT.start () ;

Of course, now is the time to check it works! Re-export the server and get it running, then (same as
before) get a client running and test it works. Now, to show our update was successful, run a second
instance of the client. You should see that both the clients work simultaneously!

EM Echo Server!

-

&N Echo Client!

elcome to EchoClient?

Enter vour input helow:
Tezt message
Test message

iz the first client
This iz the first client

= Ehi&'

=[]

<l

B Echo Client!

e lcome to EchoClient?
Enter vour input helow:
Test message H2

FEcho: Test message H2

Both clients are working?
FEcho: Both clients are working?

L ~

Great! We have a working, networked program!

That's all for this lesson, however | intend to make a future one covering how you can network your
Greenfoot games to have network best scores, chat services, and more in them!

| recommend that you try it - at least in a simple form - first: Just make a server program in Bluel,
and then have your game connect to it like we did with our client program.

| hope you learnt from this, and happy coding!

