

Assumed knowledge:

 The basics of java

 What a package is

 What a main method is

Covered in this lesson:

 Creating simple networked server-client applications

 Using BlueJ

 Creating .bat files to run .jar files using command prompt

 Threading (briefly)

In this guide I will cover the basics of networking, and walk through the creation of some programs.

First off, I should introduce the java package we're going to use for this: The java.net.* package. You

can go right ahead and look at its documentation but it might make slightly more sense to see some

of the methods in action, as that will probably be clearer. We're also going to be using the java.io.*

package. When I use classes from java.io I won't fully explain how they work, as this is about

networking. If you want to understand these uses, there will be material on the internet, and I

might make a lesson in the future covering it.

Now, although this is a course for programming in Greenfoot, I feel it will be much clearer if first we

make a program or two in BlueJ (If you don't have this, download it here). BlueJ (actually made by

the same people as Greenfoot, so you may recognise the code editor interface) is a simple IDE for

creating programs rather than games (you can create games in it, but it's much, much more complex

than doing it in Greenfoot).

The first program we're going to be making

will be called "Echo". What it will do (as you

might have guessed) is take a message from

the user, send it to the server, and display the

message the server sends back (which will be,

in this case, the same message with "Echo: "

added before it).

Now for this we're going to have to create 2

separate programs (named "EchoClient" and

"EchoServer" - I recommend naming

networked programs like this to avoid

confusion). The first program I'm going to

walk through the creation of is "EchoClient".

http://docs.oracle.com/javase/1.5.0/docs/api/java/net/package-summary.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/package-summary.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/package-summary.html
http://www.bluej.org/download/download.html

Firstly what we're going to do is create a class. To do this, click the "New Class..." button, enter the

name for it (We're going to call it "Main"), and hit OK.

Once you've done this, click on the box that has the title "Main" on it to access the code editor, and

the fun part can begin.

Now the first part we should do is getting the user's input. Here's my approach to it:

What's going on here is effectively:

1. Print a welcome message

2. Create a (Buffered)reader that reads from the System input stream

3. Create the userInput variable

4. Read a line from the user and store it as userInput

5. Check the user doesn't want to exit the program (indicated by typing "Stop")

6. If the user does want to continue, do stuff with the input and then go back to step 4

7. If the user wants to quit, print a termination message and stop the program

Now we need to send the user input to the server, wait for a response and display the response

received.

Thinking about how we will do this, the process could be concisely represented as such:

1. Attempt to establish a connection with the server

2. If successful, continue, if not, print an error message and exit

3. Send our input to the server

4. Wait for a response from the server

5. Print the response

So the first part required is to establish a connection with the server. The following code does

exactly that:

First things first, I should give a couple of

points to note, specifically about lines 13 and

14. For your program to work you'll need to

change line 13 to the host name of your

machine. If you don't know your host name,

you'll want to view your computer's details

by doing Start Menu → Computer → Properties. Then, scroll down until you see your host name.

Moving on to line 14, the port number for our application is going to be 30000 because it is free (or

at least it is on my machine, you may have to change it later on when we're making our server

application if you find that port 30000 is busy for you... Anyway, we'll get onto that in time).

Going back to our client application, you'll notice that

our connection to the server is in the form of a Socket

object. In Java, connections are established between

clients and servers in the form of Sockets and

ServerSockets, where the Socket is the client's end of

the connection and the ServerSocket is, well, the

server's end of things. Imagine (for now) that Sockets

are plugs, and ServerSockets are plug sockets (to help

visualize this, see right). My point being that you not

only need both of them, but they - in the plug analogy -

must be the same type. What I mean is the port number in your client program must be the same as

the one your server is 'listening' on.

Anyway, back to the code. Left to do on the client is sending our input to the server and getting the

response - here's my solution to this:

http://docs.oracle.com/javase/6/docs/api/java/net/Socket.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/net/ServerSocket.html

Our client program is now completed, however if you

run it now, you'll get an error telling you that the

server is offline - which of course it is, as we haven't

even made it yet! I'm not going to go over this code, as

instead I'm going to move on to making the server

application, and once that's made I'll talk about how

they are interacting, which should make more sense.

Before I do that, I'm just quickly going to cover running

program(s). In BlueJ, you can (similar to Greenfoot)

actually run them within the IDE, rather than having to

go to the pain of exporting it. To do this, right click on the box which says "Main", and then invoke

our method ("void main(String[] args)"). I will cover exporting programs later, once we have created

our server program (it's slightly more complicated than you initially may think).

Starting the server program, we could come up with an idea of how it might work, like this:

1. Try to make a ServerSocket

2. If successful, wait until someone connects to the server, else quit

3. When someone connects, wait for messages from the client

4. When a message is received, manipulate it and send back the reply

5. Keep repeating steps 3&4

Put into code, this looks like the following (also I'm assuming you've made a new project called

"EchoServer" with, again, a class called "Main"):

Now, while it might seem a big jump for me to go from nothing to the entire program, don't worry -

I'm going to go over it!

One thing you may or may not notice from my code, is that I wasn't entirely telling the truth in my

plug socket picture earlier - for a correct analogy, the ServerSocket is the actual power supply (which

there's only one of), and the Socket in the server program is the plug socket (of which we only have

one at the moment, but there is the potential for many to all stem from the same ServerSocket). The

client Socket is, however, still the plug. A difference between plugs and Sockets is that a plug

connected to a plug socket can only have transfer of power (data) in one direction - from the socket

to the plug - however when you have two connected Sockets it can go in both directions (I talk about

this more in the following paragraph).

Walking through this code, we're creating a ServerSocket with a specified port. We then do Socket

socket = servSocket.accept();. What this does is that servSocket.accept()

listens for a connection request to our

ServerSocket servSocket, and delays within the

call to accept() until a client attempts to

connect, at which point it makes a server-side

Socket which is linked to the client who

connected's Socket. When I say they're

connected, I mean that one's InputStream is the

other's OutputStream (for clarity, see right). Say that s1 in the

diagram is our client Socket. When we do , the message goes to the

right-facing black arrow - the stream of data between the two

Sockets. So, when our server Socket (s2 in this case) reads from the

stream, the message from the client is received. And, obviously, vice

versa (when sending from s2 to s1). Anyway, it then stores that as a

variable called "socket". Once we have our Socket linked to the

client's one, we set up a PrintWriter and BufferedReader so we can

easily access these streams talked about above. After that, we keep

looping round, reading lines from the client, modifying them to say

"Echo: <message>" as opposed to "<message>", and sending them

back to the client. Once the server receives the message "Stop" from

the client, it exits this loop and, for good habits, closes our

connections.

Now that we have both our client and our server programs

finished, we're going to quickly test them. Instead of running

them within the IDE (which you can of course do), we're going

to export our programs. To do this, we're going to create two

.jar files - one for our client, one for our server - and then

create two .bat files that will run the programs in command

prompt (so you can use System.in/System.out).

To make the .jar files, open up both of the

projects and click File → Create Jar File. Once

presented with the creation screen, select "Main"

as the main class, and name the file either

EchoClient.jar or EchoServer.jar (obviously

depending on which you are exporting at the

time). Once you've done this for both programs,

you're going to need to open up Notepad.

In Notepad, type the following:

And save it as a .bat file in the same directory as your .jar files:

Once you've done that for the client, replace any mentions of "Client" in the text to "Server" and

save accordingly.

Time to run the programs! Navigate to the directory where your files are located, and run the server

program's .bat file.

Hopefully, you should be presented with the following:

If you get the error message we included

saying that port 30000 is busy, just change

the port to a different one (not only in the

server program but also the client one!)

and re-export.

 Once your server is running happily with no problems, run your client's .bat file - it should look like

the following when running:

Enter a couple of test messages (press enter to

send a message), and you should receive responses

like so:

It works! Congratulations on your first networked program - however we're not done yet!

A problem with this is if you attempt to run a second instance of the client program, this happens:

If not clear from the picture, what occurs is the program

loads up, and lets you send a message (it thinks that its

connected to another - server - socket), however it then

stalls, waiting for a response from the server that its

never going to get, because the server is dealing with the

first connection it received after running - the first time

we ran the client program.

So, we need to support multiple clients.

To make this change, all we need to do is modify the server program - the client program doesn't

care whether it's the only one connected or if there are a thousand others connected. What we are

going to do to support this functionality is every time we have an incoming connection request, we

create and dispatch a new Thread to deal with it. To quickly cover how Threads work, here's an

excerpt from the documentation:

"declare a class to be a subclass of Thread. This subclass should override the run method of

class Thread. An instance of the subclass can then be allocated and started. For example, a thread

that computes primes larger than a stated value could be written as follows:

class PrimeThread extends Thread {

 long minPrime;

 PrimeThread(long minPrime) {

 this.minPrime = minPrime;

 }

 public void run() {

 // compute primes larger than minPrime

 . . .

 }

}

The following code would then create a thread and start it running:

PrimeThread p = new PrimeThread(143);

p.start();"

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Thread.html

So, we're going to firstly create a new class named "EchoThread", with the following code:

I'm not going to go over this code because you'll notice a lot of this code is copy-pasted from our

original "Main" class. Basically, what we're doing is just moving the processing to this new class.

Of course, we've now got to modify Main.class. What we're going to change is how we deal with

incoming requests. I've covered what we're going to do already, so let's jump right into the code:

This code loops round (in lines 23-24), listening for a connection, and once it gets a link to a client,

creates a connected Socket, passes it to a newly-created Thread, and starts the Thread. The Thread,

like we saw in EchoThread.class then deals with the client.

If it's not clear how line 24 is doing that, it might be more obvious in a longer form:

while(true)

{

 Socket socket = servSocket.accept();

 EchoThread eT = new EchoThread(socket);

 eT.start();

}

Of course, now is the time to check it works! Re-export the server and get it running, then (same as

before) get a client running and test it works. Now, to show our update was successful, run a second

instance of the client. You should see that both the clients work simultaneously!

Great! We have a working, networked program!

That's all for this lesson, however I intend to make a future one covering how you can network your

Greenfoot games to have network best scores, chat services, and more in them!

I recommend that you try it - at least in a simple form - first: Just make a server program in BlueJ,

and then have your game connect to it like we did with our client program.

I hope you learnt from this, and happy coding!

