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Abstract 

In the digital era we live in, where so much financial activity takes place online and personal 

details are sent through the air, digital security is increasingly necessary and high-profile. 

Quantum computers – seen as the next revolution in both science and computing – could have a 

huge impact on encryption. I find in this paper that quantum computing can change our approach 

to encryption and explain the background required to understand why this is so. Quantum 

computing will render leading encryption methods insecure (I cover some of the effects of Shor’s 

algorithm), however it will also provide methods of quantum encryption, one of which I discuss. 

To source the information I largely use secondary literature. 
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Introduction 

Many encryption methods today rely on certain tasks being inherently difficult. If these tasks 

were found to be not-so-difficult – i.e. a faster way of doing them was found – then these 

encryption methods would become void; an insecure encryption method has no use. Quantum 

computers will let us complete certain tasks quicker and some of these tasks are the same ones 

that much encryption relies on. Clearly, if we can break these methods by using quantum 

computers, then how encryption is done – how it remains secure – will have to be rethought. The 

same quirks of quantum mechanics that give quantum computers all their power are able to be 

used in quantum encryption, which could be used to replace our existing encryption methods. 
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Quantum Computers 

Before we attempt to understand quantum computing (which we should do before discussing 

their potential impact) we must first know the model of computing in use currently. 

In the early 20th century, Alan Turing, a British scientist, was working on the 

Entscheidungsproblem1. In the process of resolving it, he came up with the concept of the 

“universal Turing machine”, which is arguably the basis for the computers we use today2. A fixed 

Turing machine (later I’ll refer to this as a deterministic Turing machine) he defined (theoretically) 

as a contraption which ‘is supplied with a “tape” ... running through it, and divided into sections 

(called “squares”) each capable of bearing a “symbol”’3. The machine has a read/write head which 

is over one of the squares at any one time, and has the ability to erase the symbol on the 

“scanned square”, print a new symbol there, or move the head’s position on the tape left or right. 

What the machine will do next is determined by its fixed set of internal rules. These machines do 

what they do, say, calculate √  and print it on the tape, but that’s about the extent of it. You can’t 

ask the machine just mentioned to now calculate π. 

This is where the universal Turing machine comes in. Every Turing machine has a description 

number, which is the machine’s m-configurations encoded to one number. The universal machine 

is supplied with a tape bearing the description number of some Turing machine, and proceeds to 

act as if it were the machine on tape. For instance, given the √  computing machine, it would 

compute and print √ . So, the universal machine is programmable – it reads in a number, and 

alters what it does accordingly. Nowadays, computers are effectively based on this model; reading 

in bits and bytes of data and changing functionality accordingly. Instead of thinking of current 

computers as Dells or Macs and all their inner workings, we can consider Turing machines. This is 

                                                           
1
 A simple explanation of the problem: http://mathworld.wolfram.com/DecisionProblem.html 

2
 DAVIS, M. 2001. Engines of Logic: Mathematicians and the origin of the Computer. 

3
 TURING, A. 1936. On Computable Numbers, with an application to the Entscheidungsproblem. 

http://mathworld.wolfram.com/DecisionProblem.html
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because Turing machines are the simplest universal model of computation as “every … 

computation can be carried out by a Turing machine”4 (this was shown in the Church-Turing 

thesis). This means that if we can calculate some function on our laptop, the function is also 

calculable on a Turing machine. 

Quantum computers – proposed by Richard Feynman in 1982 – use some of the central ideas in 

quantum physics and are fundamentally different from ‘normal’ computers. Before we consider 

quantum computing’s impact, we shall first cover some of the ideas that they are based on. This 

should serve as a taste of their complexity, but nothing more than that; even Feynman admitted 

“I think I can safely say that nobody understands quantum mechanics”5. 

Possibly the most important idea is the concept of things being in multiple states simultaneously; 

in a superposition of states. Austrian physicist Erwin Schrödinger illustrated this with his famous 

cat thought experiment: 

A cat is penned up in a steel chamber, along with the following device (which must be secured 

against direct interference by the cat): in a Geiger counter, there is a tiny bit of radioactive 

substance, so small that perhaps in the course of the hour, one of the atoms decays, but also, with 

equal probability, perhaps none; if it happens, the counter tube discharges, and through a relay 

releases a hammer that shatters a small flask of hydrocyanic acid. If one has left this entire system 

to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. 

The psi-function of the entire system would express this by having in it the living and dead cat 

(pardon the expression) mixed or smeared out in equal parts.6 

                                                           
4
 COPELAND, J. 2002. 4/11/12. http://plato.stanford.edu/entries/church-turing/ 

5
 FEYNMAN, R. 1964. 4/11/12. http://bouman.chem.georgetown.edu/general/feynman.html 

6
 SCHRÖDINGER, E. 1935. The Present Situation in Quantum Mechanics. 4/11/12. http://www.tu-

harburg.de/rzt/rzt/it/QM/cat.html 

http://plato.stanford.edu/entries/church-turing/
http://bouman.chem.georgetown.edu/general/feynman.html
http://www.tu-harburg.de/rzt/rzt/it/QM/cat.html
http://www.tu-harburg.de/rzt/rzt/it/QM/cat.html
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The idea is that until you measure the cat’s state it could be either alive or dead, so it is viewed as 

both alive and dead simultaneously. 

A classical computer deals in bits of data – each one representing a 1 or a 0. Quantum computers, 

however, use qubits. Qubits differ in that, while they also represent 1s or 0s, they can be in a 

superposition of all states – which means that they are, like Schrödinger’s cat, both alive and 

dead; both 1 and 0 simultaneously. 

Because of this, relatively few particles in superpositional states can represent a huge amount of 

data. For example: 

A mere 1,000 particles can be in a superposition that represents every number from 1 to 21000 

(about 10300)7 

Notice the difference here. 1,000 bits can represent any number from 1 to 21000 (inclusive), but 

1,000 qubits in a superposition can represent every number in the range. Similarly, Schrödinger’s 

cat is representing every possible state (i.e. dead and alive), whereas a normal cat is representing 

any state (i.e. dead or alive). Many things can be used as qubits; people have used photons and 

electrons. With photons the direction of the light’s polarization can be used to represent 1/0, with 

electrons their spin direction can be used. 

Another phenomena of quantum physics is known as quantum entanglement. Referred to as 

“spukhafte Fernwirkung” (“spooky action at a distance”) by Albert Einstein in 19478, quantum 

entanglement is when two particles (though it has been demonstrated with things as large as 

                                                           
7
 AARONSON, S. 2008. The Limits of Quantum Computers. 4/11/12. 

http://www.cs.virginia.edu/~robins/The_Limits_of_Quantum_Computers.pdf 
8
 In a letter from Einstein to Max Born, 3 March 1947. Find this in The Born-Einstein Letters; Correspondence 

between Albert Einstein and Max and Hedwig Born from 1916 to 1955, Walker, New York, 1971 

http://www.cs.virginia.edu/~robins/The_Limits_of_Quantum_Computers.pdf
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small diamonds9) interact and are then separated. The interaction must be such that both 

particles have the same indefinite quantum mechanical description (state). This means that the 

pair is entangled, and like superpositions, their state is indefinite until measured. The act of 

measurement of one particle immediately gives information about the other one, even if it is 

unmeasured. Dr R. A. Bertlmann is possibly best known for his socks: 

Dr. Bertlmann likes to wear two socks of different colours. Which colour he will have on a given 

foot on a given day is quite unpredictable. But when you see that the first sock is pink you can be 

already sure that the second sock will not be pink. Observation of the first, and experience of 

Bertlmann, gives immediate information about the second.10 

If these were quantum socks, then we can prove through experiment that neither of them has a 

colour – neither of them knows if they will be pink or not pink. But if you observe one, then it will 

randomly assume pink or not pink and the other one will immediately turn into the opposite.11 

In quantum systems, the act of observation of particles changes them. So, to be able to “read” a 

qubit, you entangle it with another and read the latter (as they are linked). 

There are many problems facing quantum computing; one such problem is decoherence. 

Decoherence basically means that quantum wave function collapses into one state; so for 

instance a qubit in superposition may ‘collapse’ to a 1. This isn’t an impossible problem to 

overcome, however it is taking lots of research to get around. With these problems, at the time of 

                                                           
9
 LEE, K.C.; SPRAGUE, M.R.; SUSSMAN, B.J.; NUNN, J.; LANGFORD, N.K.; JIN, X.M.; CHAMPION, T.; 

MICHELBERGER, P.; REIM, K.F.; ENGLAND, D.; JAKSCH, D.; WALMSLEY, I.A. 2011. Entangling Macroscopic 
Diamonds at Room Temperature. 4/11/12. http://www.sciencemag.org/content/334/6060/1253.abstract 
10

 BELL, J.S. 1987. Speakable and Unspeakable in Quantum Mechanics: "Bertlmann’s socks and the nature of 
reality" 
11

 Adapted from an interview with Anton Zeilinger 
http://www.metacafe.com/watch/5705317/quantum_entanglement_and_teleportation_anton_zeilinger/ 

http://www.sciencemag.org/content/334/6060/1253.abstract
http://www.metacafe.com/watch/5705317/quantum_entanglement_and_teleportation_anton_zeilinger/
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writing no-one has a sufficiently large scale computer to be of any use yet (however there have 

been many small-scale efforts12 13 14).  

                                                           
12

 SAR, T.; WANG, Z.H.; BLOK, M.S.; BERNIEN, H.; TAMINIAU, T.H.; TOYLI, D.M.; LIDAR, D.A.; AWSCHALOM, 
D.D.; HANSON, R.; DOBROVITSKI, V.V. 2012. Decoherence-protected quantum gates for a hybrid solid-state 
spin register. 4/11/12. http://www.nature.com/nature/journal/v484/n7392/full/nature10900.html 
13

 PLA, J.J.; TAN, K.Y.; DEHOLLAIN, J.P.; LIM, W.H.; MORTON, J.J.L.; JAMIESON, D.N.; DZURAK, A.S.; 
MORELLO, A. 2012. A single-atom electron spin qubit in silicon. 4/11/12. 
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11449.html 
14

 http://www.dwavesys.com/en/products-services.html 

http://www.nature.com/nature/journal/v484/n7392/full/nature10900.html
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11449.html
http://www.dwavesys.com/en/products-services.html
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Computational Complexity Theory 

Many encryption algorithms rely on problems being fundamentally hard. But how do you define a 

problem as being hard? Ask a computer scientist how difficult a problem is and you might get an 

answer claiming the problem to be in  . What are they talking about? 

Computational complexity theory attempts to place computational problems into classes. These 

classes, such as   and    contain problems of varying inherent difficulty. 

But how do you classify how difficult a problem is? When classifying problems, we use the 

fastest15 known algorithm. Our measure of complexity is how its time taken to solve the 

problem’s worst-case scenarios grows with the size of the problem. Say the problem is to guess a 

number that has been randomly chosen between 1 and 10 inclusive, and your hypothetical 

algorithm is to guess each of the numbers in turn. In this case, the problem size – the range of 

numbers – is 10, and the worst-case number of guesses is 10 (if the correct number was the last 

one you guessed). If the number is now between 1 and 20, then both the size of the problem and 

the algorithm’s worst-case performance are 20. Because the worst-case performance is clearly 

varying in proportion to the size of the problem, the algorithm would be said to have a BigO 

efficiency of O(n). O(…) is BigO notation and is used to express the worst-case order of growth of 

algorithms. Whatever is contained within the parentheses is the number of operations required 

to solve the problem, generally given in terms of n (with the exception of O(1), which is an 

algorithm that always completes in the same time regardless of size), where n is the size of the 

problem. In computer science, whether something’s actually O(n) or O(5n + 17) is deemed 

effectively irrelevant; they’d both be given as O(n), as what we’re interested is the shape of the 

algorithm’s growth curve, rather than the finer details. 

                                                           
15

 Fastest in the sense of having the quickest worst-case time. 
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  is the class of problems for which an algorithm exists which can solve them in polynomial time 

using a deterministic Turing machine. An algorithm is said to run in polynomial time if it runs no 

slower than n raised to a fixed power; if it has a worst-case performance of O(nk) where k is some 

constant. So for instance an O(n2) algorithm runs in polynomial time. Problems in   are 

considered to be efficient, however problems with large exponents are unfeasible for all except 

very small problem sizes. For example, an algorithm that runs no slower than n7 milliseconds 

given a data set of n elements would have a worst-case scenario length of time longer than the 

universe has been in existence given a data set of only 1000 elements16. 

The    class holds problems for which possible solutions can be verified in polynomial time. The 

distinction here is that it’s not a question of whether you can solve the problem, but whether, 

given a solution, you can verify its correctness.   is said to be a subset of   , as all problems in   

are also in   . This is because if you can create a correct solution for the problem efficiently (i.e. 

in O(nk) time), it follows that you should be able to verify a solution efficiently as well. 

The problems in the class   -complete – another subset of    – have no known efficient 

solutions. As it is in the    class, solutions are however efficiently verifiable.   -complete 

problems can be transformed to any other    problem efficiently – this is the test for   -

completeness, and will come up again later. These play a crucial part in the       problem, 

which is as yet un-resolved and one of the biggest open questions in computer science. 

The       (also known as   vs    and      ) problem, a solution for which the Clay 

Mathematics Institute is offering $1,000,00017, asks whether all problems in    can be solved 

efficiently and so are in  . If this is the case, then     , otherwise     . This is effectively 

asking whether there exists an algorithm that can solve an   -complete problem efficiently. 

                                                           
16

 Estimates such as one in http://arxiv.org/abs/1001.4744 give the age of the universe to be roughly 
4.3x10

17
s, which is less than 1000

7
ms = 10

21
ms = 10

18
s 

17
 http://www.claymath.org/millennium/ 

http://arxiv.org/abs/1001.4744
http://www.claymath.org/millennium/
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  -complete problems are hard. Not the kind of hard that means you scratch your head for half 

an hour and then do it on your computer. They are the kind of hard that means your computer 

can take billions of years to complete them.       is asking if there’s a better – as in, faster – 

way to solve them. Currently there is no known algorithm that can solve an   -complete 

problem efficiently – i.e. in polynomial time. While most computer scientists suspect that there is 

no algorithm that will do this (and subsequently believe that     )18, it has not (at the time of 

writing) been proved that this is true. If an algorithm exists that will solve any   -complete 

problem efficiently, then all problems in    can also be solved efficiently – i.e. are in  . 

This is because problems can be transformed into other problems. As we said before, the test for 

  -completeness is the following: A problem is   -complete if and only if it can be transformed 

to any other   -problem efficiently. What this means is, given two problems A and B where A is 

in    and B is   -complete, we can solve A using an algorithm we have for B with at most a 

polynomial slowdown. So if we know an efficient algorithm for B, we can solve A efficiently also; it 

would take the sum of B’s time to solve plus the slowdown, and summing two polynomials gives a 

polynomial. The key point here is that A can be any problem in   , meaning that if we can find a 

single efficient algorithm for a single   -complete problem, then we have an efficient algorithm 

for every problem in   . So to prove that     , all that is needed is one algorithm. It is much 

harder to prove that     , because you have to prove that no such algorithm can exist; 

pointing out that even though scores of top mathematicians/computer scientists have been trying 

to find one for decades and none have been found does not constitute proof.  

                                                           
18

 GASARCH, W.I. 2002. The P=?NP Poll. 4/11/12. http://www.cs.umd.edu/~gasarch/papers/poll.pdf 

http://www.cs.umd.edu/~gasarch/papers/poll.pdf
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Encryption 

      asks if there exists efficient algorithms for “hard” problems. Quantum computers should 

provide a means to solving these “hard” problems with quantum algorithms. Many quantum 

algorithms have already been written, providing sometimes exponential speedups. The first 

example of this is from 1993, with an oracle problem which is exponentially faster on a quantum 

computer than on a classical one. In 1994 Peter Shor created Shor’s algorithm, which may have 

huge effects on encryption (which we shall cover later). Shor’s algorithm is used in factoring large 

integers, and provides an exponential speed up to the fastest known classical algorithm. 

Encryption is the process of converting some data – also known as plaintext – into a form which 

should be unreadable to everyone. Everyone, that is, except those who are able to decrypt it. 

Decryption takes the encrypted data and turns it back into the original plaintext. Plaintext doesn’t 

necessarily have to be words; it can also be sound, images and so on (really any sort of data; on 

computers the type of data is irrelevant as everything is stored as 1s and 0s). Encryption is done 

through applying an encryption algorithm to the data and decryption just uses the reverse of the 

encryption algorithm. 

As an example, say we want to encrypt “Cat” and our encryption algorithm is to increment each 

letter (‘A’=>’B’, ‘B’=>’C’…), then the encrypted version would be “Dbu”. To decrypt it, we just 

decrement each letter; “Dbu”=>”Cat”. Hopefully to someone who doesn’t know your encryption 

algorithm, “Dbu” will appear to be gibberish.  

Now, if someone wished to decrypt the “Dbu”, they would need to know how it was encrypted – 

in this case by cycling the letters – to be able to do the reverse (and so to convert it back to “Cat”). 

However, there is a method of encryption whereby even if they know the encryption method, 

others may find decryption incredibly difficult. This method is known as public key encryption. 
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Encryption & decryption algorithms can modify their behaviour based on a number. For example, 

we could modify our earlier algorithm to use a key, whereby the key is some number, and that is 

the amount to change the letters by. So, where the plaintext is still “Cat”: 

Key Encrypted 

1 “Dbu” 

2 “Ecv” 

3 “Fdw” 

As should be clear, how the data is encrypted is different for each key. Now, even if someone 

(who we don’t want viewing the data) knows our encryption/decryption algorithms, they cannot 

decipher the encrypted information easily. Given “Fdw”, you would have to try various keys to 

successfully decrypt it – for example trying to decrypt with a key of 2 would give “Dbu”, which is 

no more decipherable than it was before. 

In public key encryption methods there are 2 keys: An encryption key and a decryption key. The 

encryption key is – or can be – publicly distributed (hence the name of ‘public key’ encryption). 

The decryption key, however, must be kept private. The two keys are related such that the 

message – encrypted using the public key – can only be decrypted by the private key. However, as 

people may know the public key, their relationship must be one whereby, given the public key, it 

is impossible – or so complex as to render it effectively impossible – to find the private key. This is 

obviously necessary as people may know the (public) encryption key. There are various algorithms 

which generate good public/private key pairs which satisfy these conditions; the most popular 

one is RSA, which I shall discuss later. 
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Public key encryption is incredibly secure, as someone can know a lot about some encrypted 

information – the encryption method, the decryption method and the public encryption key – yet 

still be left unable to decrypt it. For this reason it is very widely used.  



Name: Bertram Wheen 
Candidate Number:        001451-037 

 
 

13 
 

Effects on classical encryption 

RSA – invented in 197719 20 – is an algorithm used for generating (public and private) keys, as well 

as encryption/decryption. We won’t cover the actual algorithm (it’s quite complicated), however 

it will suffice to say that the product of two prime numbers is used to generate the public and 

private keys. The security of RSA relies on the fact that factoring this product back into the two 

primes is computationally hard; integer factorization is   -complete. While there is some debate 

over whether breaking RSA is as difficult as factoring21, it is no more difficult than factoring22 and 

so if an efficient integer factorization algorithm is found, then RSA can be broken efficiently. 

The fastest known ‘classical’ (i.e. non-quantum) algorithm for large integer factorization is the 

general number field sieve (abbreviated to GNFS), which runs in superpolynomial time; i.e. 

inefficiently. There is no known efficient (non-quantum) algorithm and so integer factorization is 

outside  . Clearly though it is in   , as verifying a solution is easy; if the product of the factors is 

the original number (the one which was factorized) and the factors are prime (there are efficient 

algorithms for primality testing, so this is not a problem to check), then the solution is verified. 

The fact that it is in    means that if     , then we can solve it efficiently through 

transformation as we discussed before. However, judging by the decades of work done and 

general view that     , it is unlikely that     , meaning this is unlikely to break RSA. 

What is likely to break RSA, however, is quantum computing. Shor’s algorithm (mentioned earlier) 

factorizes large integers efficiently. A quantum computer running Shor’s algorithm would be able 

to factorize RSA numbers very quickly, meaning it is possible to break RSA encryption. It isn’t just 

                                                           
19

 It was independently invented about 3 years before, however this was kept secret until 1997. 
20

 1999. Basic Concepts in Data Encryption: Key-Based Encryption. 4/11/12. 
http://library.thinkquest.org/27158/concept2_4.html 
21

 BONEH, D.; VENKATESAN, R. 1998. Breaking RSA may not be equivalent to factoring. 4/11/12. 
http://theory.stanford.edu/~dabo/abstracts/no_rsa_red.html 
22

 GREGG, J.A. 2003. On Factoring Integers and Evaluating Discrete Logarithms. 4/11/12. 
http://wstein.org/projects/john_gregg_thesis.pdf 

http://library.thinkquest.org/27158/concept2_4.html
http://theory.stanford.edu/~dabo/abstracts/no_rsa_red.html
http://wstein.org/projects/john_gregg_thesis.pdf
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theory: people have successfully factorized numbers using Shor’s algorithm23 24 25 26 27, however 

the numbers factorized have been very small due to the small number of qubits. 

Of course, it is possible to break RSA without quantum computers – RSA numbers (the products of 

two large primes which can be used for public/private key creation) have been broken in the past 

– it just requires huge effort. For example, RSA-768 was broken in 2009 through using many 

hundreds of machines for two years, 80 processors for half a year and more28. RSA-768 is a 232-

digit RSA number (the product of two 116 digit primes) which, prior to it being factorized could be 

used for creating a public and private key. At the time of writing, RSA-768 is largest RSA number 

to be successfully factorized. RSA-1024 – the most commonly used RSA number – is 309 digits 

long and would be about 1000 times harder to factorize than RSA-76829. RSA-1024 is not, 

however, impossible to factorize, it’s just that – unless computers advance a lot and there is 

another effort involving many hundreds of computers – it is completely unfeasible to do. It is 

unlikely such an event will occur; it is so widely used, people would not attempt to break it except 

with malicious intent (even then it would be difficult to convince lots of people to lend you their 

computers for a few years).   

                                                           
23

 VANDERSYPEN, L.M.K.; STEFFEN, M.; BREYTA, G.; YANNONI, C.S.; SHERWOOD, M.H.; CHUANG, I.L. 2001. 
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. 4/11/12. 
http://cryptome.org/shor-nature.pdf 
24

 LU, C.; BROWNE, D.E.; YANG, T.; PAN, J. 2007. Demonstration of a Compiled Version of Shor’s Quantum 
Factoring Algorithm Using Photonic Qubits. 4/11/12. http://prl.aps.org/abstract/PRL/v99/i25/e250504 
25

 LANYON, B.P.; WEINHOLD, T.J.; LANGFORD, N.K.; BARBIERI, M.; JAMES, D.F.V.; GILCHRIST, A.; WHITE, A.G. 
2007. Experimental Demonstration of a Compiled Version of Shor’s Algorithm with Quantum Entanglement. 
4/11/12. http://prl.aps.org/abstract/PRL/v99/i25/e250504 
26

 LUCERO, E.; BARENDS, R.; CHEN, Y.; KELLY, J.; MARIANTONI, M.; MEGRANT, A.; O’MALLEY, P.; SANK, D.; 
VAINSENCHER, A.; WENNER, J.; WHITE, T.; YIN, Y.; CLELAND, A.N.; MARTINIS, J.M. 2012. Computing prime 
factors with a Josephson phase qubit quantum processor. 4/11/12. http://arxiv.org/pdf/1202.5707v1.pdf 
27

 MARTÍN-LÓPEZ, E.; LAING, A.; LAWSON, T.; ALVAREZ, R.; ZHOU, X.; O’BRIEN, J.L. 2012. Experimental 
realization of Shor’s quantum factoring algorithm using qubit recycling. 4/11/12. 
http://arxiv.org/pdf/1202.5707v1.pdf 
28

 KLEINJUNG, T.; KAZUMARO, A.; FRANKE, J.; LENSTRA, A.K.; THOMÉ, E.; BOS, J.W.; GAUDRY, P.; KRUPPA, 
A.; MONTGOMERY, P.L.; OSVIK, D.A.; RIELE, H.; TIMOFEEV, A.; ZIMMERMANN, P. 2010. Factorization of a 
768-bit RSA modulus. 4/11/12. http://eprint.iacr.org/2010/006.pdf 
29

 Ibid. 

http://cryptome.org/shor-nature.pdf
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Quantum encryption 

So what’s the point of quantum computers? If they’re going to cause headaches for data security, 

why is so much effort being expended on them? Their main use is going to be in scientific 

simulations, where it is expected they will excel, making scientists lives easier and hopefully 

causing faster development as a society. Even encryption-wise, quantum computing isn’t all bad 

news: 

Quantum computing may break RSA encryption (and other encryption methods, such as those 

based on elliptic curves) however, instead of rendering encryption useless, it is more likely to 

simply mean we have to change how we encrypt data. As well as making various methods of 

encryption insecure, quantum mechanics provides a solution to its own problem: quantum 

encryption. 

Quantum encryption is just encryption using quantum properties, such as entanglement. One 

example, proposed by Artur Ekert in 1991, is Quantum Key Distribution (QKD), which works like 

so: Say there are two people – Alice and Bob30 – and Alice wishes to securely send a message to 

Bob. To do this, they must keep the key they will use for encrypting/decrypting the information 

secure. Alice creates a key (it can be anything, however for security against brute-force attacks31 a 

very large, random number is preferable) and now wants to send it to Bob so they can start 

secure communication. Through entangling particles (the nitty-gritty details are outside the scope 

of this paper), Alice can not only send the key to Bob, but also detect a third-party (say, Eve) who 

somehow intercepts the transfer. This is because Eve, by measuring the transfer, disturbs the 

system (this is unique to quantum mechanics) and so they will know that the key is now insecure 

(known by others) and so can simply try again using a different key.  

                                                           
30

 http://www.networkworld.com/news/2005/020705widernetaliceandbob.html 
31

 Where hackers use try each possible key in turn until they find the correct one 

http://www.networkworld.com/news/2005/020705widernetaliceandbob.html


Name: Bertram Wheen 
Candidate Number:        001451-037 

 
 

16 
 

Conclusion 

Quantum computing can, and moreover probably will, have a large impact on how we do 

encryption. However, the actual nature of the impact is dependent on various factors. 

If it is shown that     , then encryption methods that rely on    problems being 

computationally hard (such as RSA) will already be broken. Quantum computing, therefore, may 

not have an effect on these encryption methods. It may (depending on the speed of the efficient 

classical algorithm discovered) provide a means to cracking them faster, however people will 

most likely have ceased use of these methods anyway if they are broken. 

Quantum computing may not have an impact at all, as it is so incredibly difficult to create the 

computers that it may never happen – and if it never happens, then clearly it will have no impact. 

There are many problems such as decoherence (which was discussed earlier) left to overcome.  

Quantum encryption may be too complicated for use to become common. It is much easier to 

encrypt data in the classical way, meaning methods such as the one-time pad (OTP), which works 

in a more ‘normal’ way, may be more widespread in use.  

However, whether it happens or not, quantum computing has the potential to redefine how we 

do encryption, and for this reason I say yes: Quantum computers can change the way we encrypt 

data. 
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